

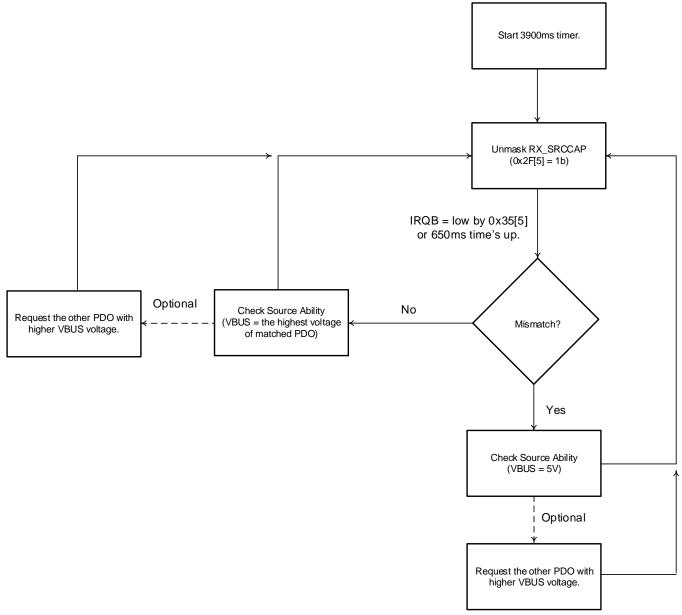
RT1719 Application Note: Implementation and Safe Use of USB PD Protocols in Sink Systems

Will Lin | AN074

The RT1719 is a USB Type-C controller that complies with the latest USB Type-C and Power Delivery (PD) standards. The RT1719 manages tasks related to USB Type-C detection, including attachment and orientation. The RT1719 integrates the physical layer of the USB BMC power delivery protocol, enabling power delivery up to 100W. The BMC PD block fully supports the Type-C specification. This application note will introduce the most prevalent uses and applications of the RT1719.

Table of Contents

1	Sink	Sink PDO Setting Framework			
		Sink PDO Configuration and Path_Opt			
	1.2 I ² C Address				
	1.3	Mismatch	5		
	1.4	Check the Source Ability	5		
	1.5	Check CC Status	6		
	1.6 Read Source PDO				
	1.7	Source PDO Selection by MCU	8		
2	Sink Path Setting1				
3	Conclusion				


1 Sink PDO Setting Framework

Generally, the system in use consumes power from the Type-C port which RT1719 controls. It is recommended to configure Table_SEL, PSEL2, and PSEL1 as the power for full functionality operation.

If the sink system intends to check the source capabilities and to operate according to the given source power, the recommended settings and flow are provided as follows.

- 1. MCU can be powered up when VBUS = 5V.
- 2. Set Table_SEL, PSEL2, and PSEL1 as the power for full function operation.
- 3. Set the Path_Opt as 001b.

For a more detailed understanding of the control flow, please refer to the subsequent sections. For instance, you can find more information about the "Mismatch block" in the Mismatch section. The process of checking is elaborated in the Check Source Ability section, and the procedure for Requesting the other PDO is discussed in the Source PDO Selection by MCU section.

1.1 Sink PDO Configuration and Path_Opt

Table_SEL

There are 128 Sink_Capabilities that can be configured. 64 Sink_Capabilities are in Table 1. The sink currents of each Sink PDO in the Sink capability are the same. The other 64 Sink_Capabilities are in Table 0. The sink powers of each Sink PDO in the Sink capability are the same, except for the one of which the sink current is over 5A.

Table Setting	Configure in Pin 18	0x3C[6]
Table 1	$10k\Omega$ to VCAP (pin 10)	1b
Table 0	10kΩ to GND	Ob

Table 1. Table_SEL Setting

PSEL

PSEL2 (pin 3) and PSEL1 (pin 4) are capable of configuring 64 settings. The sink capability can be configured according to Table select, PSEL2, and PSEL1.

PSEL2 Setting	Resistance between PSEL2 and GND (unit: kΩ) (±1%)	0x3C[5:3]
111	Open	111b
110	887	110b
101	649	101b
100	453	100b
011	324	011b
010	143	010b
001	56.2	001b
000	0	000b

Table 2. PSEL2 Setting

Table 3. PSEL1 Setting

C C					
PSEL1 Setting	Resistance between PSEL1 and GND (unit: kΩ) (±1%)	0x3C[2:0]			
111	Open	111b			
110	887	110b			
101	649	101b			
100	453	100b			
011	324	011b			
010	143	010b			
001	56.2	001b			
000	0	000b			

Path_Opt

Table 4. Path_Opt Setting

Path Option Setting	Resistance between Path_Opt and GND (unit: kΩ) (±1%)	0x3F[2:0]	Behavior	HV Bound	LV Bound
Option 7	Open	111b	The same with Path option = 000	The same with Path option 0	The same with Path option 0
Option 6	887	110b	PATHEN is low no matter if Sink PDO is matched with Source PDO.	20V	5V
Option 5	649	101b	PATHEN is low no matter if Sink PDO is matched with Source PDO.	15V	5V
Option 4	453	100b	PATHEN is low no matter if Sink PDO is matched with Source PDO.	12V	5V
Option 3	3 324 011b		PATHEN is low no matter if Sink PDO is matched with Source PDO.	9V	5V
Option 2	143	010b	PATHEN is low no matter if Sink PDO is matched with Source PDO.	5V	5V
Option 1	Option 1 56.2 001b		PATHEN is low no matter if Sink PDO is matched with Source PDO.	Depending on Max. V of the Sink capability.	 Match: Depending on the requested PDO. Mismatch: 5V
Option 0	0	000b	1. Match: PATHEN is low. 2. Mismatch: PATHEN is high.	Depending on Max. V of the Sink capability.	 Match: Depending on the requested PDO. Mismatch: 5V

1.2 I²C Address

The RT1719 can be configured to four slave addresses by setting the resistance between ADDR (pin 12) and GND.

I ² C Address in 7bit	Resistance between ADDR and GND (unit: $k\Omega$) (±1%)		
0x40	0		
0x41	309		
0x42	649		
0x43	Open		

Table 5. RT1719 I²C Address Setting

The I²C interface bus must be connected to the power node using a resistor of $1k\Omega$, and it should have an independent and separate connection to the processor.

1.3 Mismatch

There are four results for each attachment or receiving Source_Capabilities.

SPDO_MIS (0x10[3])	TYPEC_MIS (0x0F[0])	VBUSONLY_MIS (0x0E[3])	Note		
0	0	0	There is at least one condition (PD, Type C only, or VBUS only) matching with Table_SEL, PSEL settings.		
0	0	1	The source device does not have PD ability and there is no Rp at CC pin. The source ability (5V, 500mA) is mismatched with Table_SEL, PSEL settings.		
0	1	0	The source device is a Type-C-only device. The source ability advertised by Rp is mismatched with Table_SEL, PSEL settings.		
1	0	0	The source device is a PD device. The Source PDO in Source_Capabilities are mismatched with Table_SEL, PSEL settings.		

Table 6. Mismatch Indication

1.4 Check the Source Ability

The Source indicates its capabilities through the Source Capability (recorded in 0x11 to 0x2C) or the Rp level (0x38[3:0]). The Source Capability takes higher priority than the Rp level. It is recommended to check the source ability according to the flows shown in Figure 2.

Please refer to the Read Source PDO section for reading source PDO.

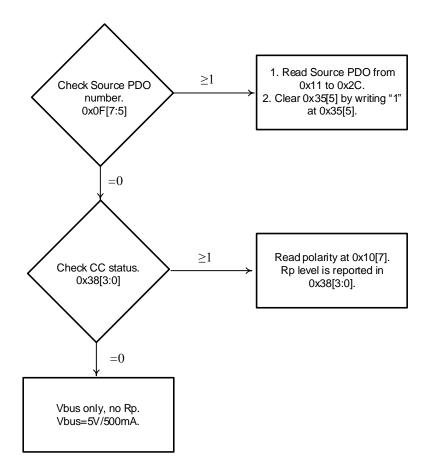


Figure 2. Flow for Source Ability Flow

1.5 Check CC Status

The RT1719 is able to report the CC status. According to the information reported, the system can obtain attach orientation and Rp level. The source ability is based on the Rp level in Type-C stage or with Type-C-Only Source attached. The orientation can also be checked in 0x10[7].

Table 7. CC Status					
			CC1 (0x	38[1:0])	
		00	01	10	11
	00	Open	Attached at CC1. Source is 5V, 0.5A.	Attached at CC1. Source is 5V, 1.5A.	Attached at CC1. Source is 5V, 3A.
CC2 (0x38[3:2])	01	Attached at CC2. Source is 5V, 0.5A.	Debug ACC	Debug ACC	Debug ACC
0030[3.2])	10	Attached at CC2. Source is 5V, 1.5A.	Debug ACC	Debug ACC	Debug ACC
	11	Attached at CC2. Source is 5V, 3A.	Debug ACC	Debug ACC	Debug ACC

1.6 Read Source PDO

The RT1719 can record the source cap in the register from 0x11 to 0x2C. There is one Source PDO with Vbus = 5V at least and seven Source PDOs at most in the Source Capability. Register 0x0F[7:5] shows how many Source PDOs are in the Source Capability.

Please note that RT1719 will only compare the Fixed supply of Source PDO with Sink PDO.

The selected Source PDO is recorded in register 0x10[2:0].

PDO Information		Register	Description
1 st PDO	Power Type	0x14[7:6]	00b: Fixed supply 01b: Battery supply 10b: Variable supply 11b: Programmable Power supply
	Vbus Voltage	0x13[3:0] (MSB) and 0x12[7:2] (LSB)	Unit: 50mV
	Current	0x12[1:0] (MSB) and 0x11[7:0] (LSB)	Unit: 10mA
2 nd PDO	Power Type	0x18[7:6]	00b: Fixed supply 01b: Battery supply 10b: Variable supply 11b: Programmable Power supply
	Vbus Voltage	0x17[3:0] (MSB) and 0x16[7:2] (LSB)	Unit: 50mV
	Current	0x16[1:0] (MSB) and 0x15[7:0] (LSB)	Unit: 10mA
3 rd PDO	Power Type	0x1C[7:6]	00b: Fixed supply 01b: Battery supply 10b: Variable supply 11b: Programmable Power supply
	Vbus Voltage	0x1B[3:0] (MSB) and 0x1A[7:2] (LSB)	Unit: 50m∨
	Current	0x1A[1:0] (MSB) and 0x19[7:0] (LSB)	Unit: 10mA
4 th PDO	Power Type	0x20[7:6]	00b: Fixed supply 01b: Battery supply 10b: Variable supply 11b: Programmable Power supply
	Vbus Voltage	0x1F[3:0] (MSB) and 0x1E[7:2] (LSB)	Unit: 50mV
	Current	0x1E[1:0] (MSB) and 0x1D[7:0] (LSB)	Unit: 10mA
5 th PDO	Power Type	0x24[7:6]	00b: Fixed supply 01b: Battery supply 10b: Variable supply 11b: Programmable Power supply
	Vbus Voltage	0x23[3:0] (MSB) and 0x22[7:2] (LSB)	Unit: 50mV
	Current	0x22[1:0] (MSB) and 0x21[7:0] (LSB)	Unit: 10mA

Table 8. Source PDO Registers

PDO	Information	Register	Description
6 th PDO	Power Type	0x28[7:6]	00b: Fixed supply 01b: Battery supply 10b: Variable supply 11b: Programmable Power supply
	Vbus Voltage	0x27[3:0] (MSB) and 0x26[7:2] (LSB)	Unit: 50mV
	Current	0x26[1:0] (MSB) and 0x25[7:0] (LSB)	Unit: 10mA
7 th PDO	Power Type	0x2C[7:6]	00b: Fixed supply 01b: Battery supply 10b: Variable supply 11b: Programmable Power supply
	Vbus Voltage	0x2B[3:0] (MSB) and 0x2A[7:2] (LSB)	Unit: 50mV
	Current	0x2A[1:0] (MSB) and 0x29[7:0] (LSB)	Unit: 10mA

1.7 Source PDO Selection by MCU

After reading Source Capability, the system master can request another source PDO through I²C. Please refer to the following steps:

- 1. Set the evaluation mode as evaluating per register setting by 0x03[4] = 1b.
- 2. Set the PDO number in 0x03[2:0].
- 3. Initiate a Request for the source PDO by setting 0x04[7] = 1b.

Please note that setting 0x03[2:0] = 000b or other invalid values (such as 0x03[2:0] = 110b but there are only five source PDOs) will trigger an I²C error (0x36[0] = 1b). Please do not set Path_Opt as 000 or 111 if MCU intends to select the Source PDO.

After initiating the Request successfully, there will be three results as reported in 0x34[3:1]. If Source sends

PS_RDY, IRQB will be low due to 0x35[2]. After receiving PS_RDY, the sink system can start to sink.

Please refer to Figure 3 for a more detailed flow.

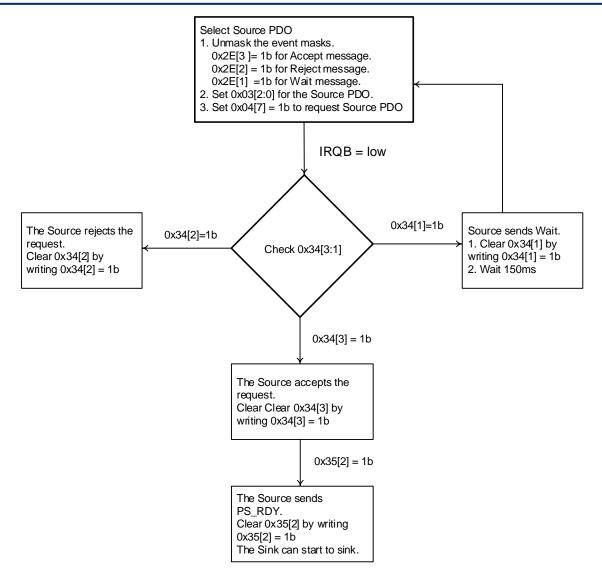


Figure 3. MCU Selecting Source PDO Flow

In addition to responding to the message, the sink capability will be modified. If the system master requests the first PDO (5V), the sink capability will be updated to 5V (with the current set according to the 5V Source PDO).

If the system master requests another valid PDO (9V, for example), the sink capability will be modified to 5V (with current set according to Table_SEL, PSEL2 and PSLE1) and 9V (with the current set according to the 9V Source PDO).

Table 9 shows the updated results of related registers.

Table 9. Sink PDO Change After MCU Selecting Source PDO

MCU Selection	MCU Select Current 0x73[1:0] (MSB) and 0x72 (LSB)	MCU Select Voltage 0x75[1:0] (MSB) and 0x74 (LSB)	5V Current 0x77[1:0] (MSB) and 0x76 (LSB)	Currents of other PDO 0x79[1:0] (MSB) and 0x78 (LSB) 0x7B[1:0] (MSB) and 0x7A (LSB) 0x7D[1:0] (MSB) and 0x7C (LSB) 0x7F[1:0] (MSB) and 0x7E (LSB)
The 1 st PDO	According to the requested Source PDO	5V	According to the requested Source PDO	0A
Another valid PDO	According to the requested Source PDO	According to the requested Source PDO	According to Table_SEL, PSEL2 and PSEL1	0A

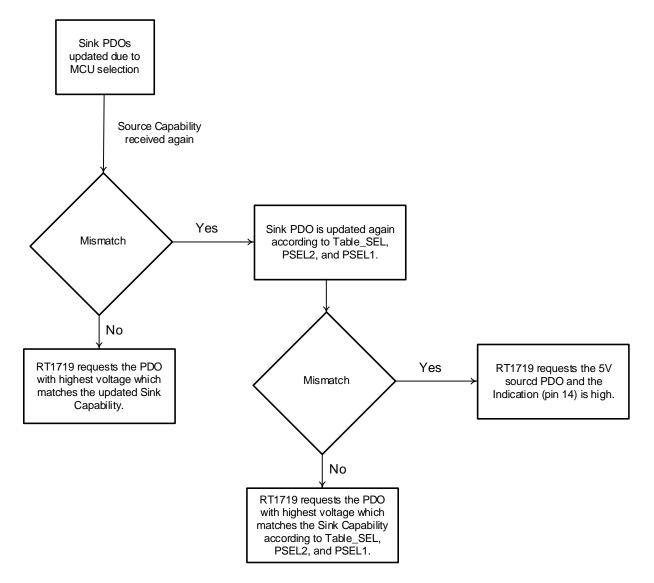
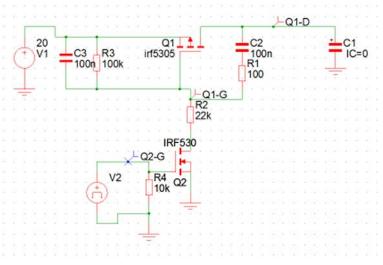
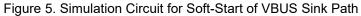


Figure 4. RT1719 Sink PDO Change Rule

Copyright © 2023 Richtek Technology Corporation. All rights reserved.	RICHTEK	is a registered trademark of Richtek Technology Corporation.
AN074 August 2023		www.richtek.com

2 Sink Path Setting


Soft-Start is necessary for sink path if the capacitance of the Sink system is high. The higher the capacitance, the more serious the thermal stress on the sink path MOSFET.


It is recommended to parallel two or more MOSFETs to share the thermal stress. The high SOA performance MOSFET is also recommended.

The MOSFET selection for SOA is detailed in Table 10.

VBUS\C1	47 (μF)	100 (µF)	220 (µF)	330 (µF)	440 (µF)
5V	SOA:	SOA:	SOA:	SOA:	SOA:
	VDS = 5V				
	Pulse = 10ms				
	Id = 0.025A	Id = 0.05A	Id = 0.075A	Id = 0.1A	Id = 0.2A
9V	SOA:	SOA:	SOA:	SOA:	SOA:
	VDS = 9V				
	Pulse = 10ms				
	Id = 0.2A	Id = 0.3A	Id = 0.5A	Id = 0.8A	Id = 1A
12V	SOA:	SOA:	SOA:	SOA:	SOA:
	VDS = 20V				
	Pulse = 10ms				
	Id = 0.2A	Id = 0.6A	Id = 0.8A	Id = 1.2A	Id = 1.6A
15V	SOA:	SOA:	SOA:	SOA:	SOA:
	VDS = 20V				
	Pulse = 10ms				
	Id = 0.5A	Id = 0.75A	Id = 1.2A	Id = 1.6A	Id = 2A
20V	SOA:	SOA:	SOA:	SOA:	SOA:
	VDS = 20V				
	Pulse = 10ms				
	Id = 0.5A	Id = 1A	Id = 1.75A	Id = 2.5A	Id = 3A

Table 10. Suggested SOA of VBUS Path PMOS Suggestion

3 Conclusion

In conclusion, the sink system with a MCU can adapt its operation based on the capabilities of the source. This approach enhances safety for various applications. The information provided in this application note simplifies the implementation of the checking flow. Furthermore, it explains how the system master can request different PDOs and how these requests affect the sink capability. The note also provides guidance on handling I²C interface and interpreting the outcomes of the request initiation. This information facilitates effective and safe use of USB PD protocols.

The above concludes all the contents covered in this application note. To stay updated with more information about our products, please <u>subscribe to our newsletter</u>.

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: 886-3-5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.